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1 Introduction

Dynamic state estimation (DSE) is a generalization of differential protection
that offers a reduced likelyhood of misoperation, particularly in the case of
devices with nonlinear characteristics such as transformers which are being en-
ergized [1]. It is also useful in cases where distance protection performs poorly,
such as transmission lines with series compensation [2] or mutually coupled
transmission lines [3]. DSE has been previously applied to microgrid branch
protection [4, 5, 6].

This study investigates the use of DSE for protection of radial portions of
a microgrid or distribution system. This can be a challenge in microgrids or
distribution systems with distributed generation on account of lack of fault cur-
rent from inverter-interfaced generation [7], varying fault current between grid-
connected and islanded modes [7], the potential for normally-meshed operation
[8] and unbalanced operation due to single-phase loads [8]. Admittance relaying
has been investigated as a solution for protection of microgrids [9], though it
has been observed to have issues with grounded-wye connected loads [10], and
additional relaying is necessary to prevent misoperation [8].

This study treats radial portions of an electrical network as load busses.
It is assumed that these portions contain no loops or downstream generation.
They are modeled as constant-impedance networks with unknown impedances
but known connectivity. To ensure that the number of measured variables is
greater than approximately 1.6 times the number of free parameters, most mod-
els presented here make the assumption that the loads are balanced, where 1.6
is a commonly selected number to ensure sufficient measurements for system
identification [11]. Every load and fault configuration will require a separate
model. For a given load configuration, a model for each fault configuration is fit
to measured values and the the model with the lowest error in terms of fitting
the observed variables is assumed to be the correct one. On a grounded-wye-
connected load the following models would be necessary to distinguish between
normal operation, line-ground faults and line-line faults:

1. Normal operation: each branch of the load has the same impedance which
is modeled as a series resistive-inductive (RL) network

2. Phase A-ground fault: the faulted branch A is modeled as a resistance
while the unfaulted branches B and C are modeled as series RL networks
with equal parameters

3. Phase B-ground fault: the faulted branch B is modeled as a resistance
while the unfaulted branches C and A are modeled as series RL networks
with equal parameters

4. Phase C-ground fault: the faulted branch C is modeled as a resistance
while the unfaulted branches A and B are modeled as series RL networks
with equal parameters



5.

Phase A-B fault: the fault impedance is modeled as a resistance across
the load terminals A and B, while each branch of the load is modeled as
a series RL network

Phase B-C fault: the fault impedance is modeled as a resistance across
the load terminals B and C, while each branch of the load is modeled as
a series RL network

Phase C-A fault: the fault impedance is modeled as a resistance across
the load terminals C and A, while each branch of the load is modeled as
a series RL network.

On a delta-connected system, the following models would be necessary to dis-
tinguish between normal operation, line-ground and line-line faults:

1.

Normal operation: each branch of the load has the same impedance which
is modeled as series RL network

Phase A-ground fault: the fault impedance is modeled as a resistance
between load terminal A and ground while the load branches are modeled
as series RL networks

Phase B-ground fault: the fault impedance is modeled as a resistance
between load terminal B and ground while the load branches are modeled
as series RL networks

Phase C-ground fault: the fault impedance is modeled as a resistance
between load terminal C and ground while the load branches are modeled
as series RL networks

Phase A-B fault: the fault impedance is modeled as a resistance across
the load terminals A and B, while the the branches across load terminals
B-C and C-A are modeled as series RL networks

Phase B-C fault: the fault impedance is modeled as a resistance across
the load terminals B and C, while the the branches across load terminals
C-A and A-B are modeled as series RL networks

Phase C-A fault: the fault impedance is modeled as a resistance across
the load terminals C and A, while the the branches across load terminals
A-B and B-C are modeled as series RL networks.

Both phasor-based and dynamic approaches are investigated for protection.
Section 2 describes the implementation of phasor-based state estimation for
load bus protection. Phasor-based state estimation is conceptually similar to
DSE but more straightforward to derive and implement as it only requires a
single time period. Section 3 describes the implementation of DSE for load
bus protection. Section 4 describes how two different transient models of loads
are developed as test cases and run to test both phasor and dynamic state
estimation, while section 5 presents the performance of state estimation on the
test cases. Finally, section 6 summarizes conclusions of this study.



2 Phasor Implementation

The phasor implemementation of state estimation-based protection is simpler,
so protection will be demonstrated first for the phasor case. For the phasor case,
only a single time sample is used which limits the number of measurements and

therefore the number of parameters that can be estimated.

2.1 Single-Phase Impedance
The output of the system illustrated in Fig. 1 is

7_‘/_
y=1]

where V' and I are phasor quantities. The state of the system is
o
_IZ_ .

X =

The output state mapping for the system is the vector-valued function

y = h(x)
where
h1 (X) Vz
=71,
hQ(X) = Iz

The Jacobian of h(x) is determined as follows

aI: =5 =2
8Ii = a—IZIZ =1

The mapping between variables and the state vector is

—~ o~
S U
= Z
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Figure 1: Phasor model for a single-phase load

Given the variable and state mapping, the Jacobian can be built as follows

oV, oV,

H= |9 9L (13)
oI, oI,
0Z oI,

Given the Jacobian, the state of the system can be solved for iteratively

€, =y —h(x;) (14)
Ji = |lesl? (15)
Xi+1 = X; + (H:HZ)_Ingl (16)

The derivation of eq. 16 is presented in the appendix.

2.2 Grounded-Wye with Line-Ground Fault
The output for the system illustrated in Fig 2 is

T

Yy = [Ia Ib Ic Va % ‘/('] (17)

This is easiest to model as an unbalanced load where the fault impedance is not
treated specially. The state of the system is therefore

T
X:[Ya Yo Yo Ve Va ‘/zc] . (18)

The output-state mapping function is
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Figure 2: Phasor model for a grounded-wye load with line-ground fault

(x)
hy(x) = I, =y Vs
h3(x) = I. = y.Ve
hy(x) =V, =V,
h;(x) =V, =V,
(x)

The Jacobian of h(x) is determined as follows:

o1, 0

= 4 aVa
0Ya ayay
ol
bt A AP 4
oy, o
ol 0
= a3 aV::
0y aycy
oV, _ oV, 1
OWV,e OV,
A % -1
Wy OV
Vo OV
Ve OV



The mapping between variables and the state vector is

Ya = T1
Yo = T2
Ye = T3
‘/za = T4
Vb = x5
Vzc = Xg-

(21)

Given the variable and state vector mapping, the Jacobian can be built as follows

2.3 Grounded-Wye with Line-Line Fault

H@U:gz
H@azg%
Hﬁngi
H(4,4) = g&
<ma@:32
H(6,6) = aa“//;

=1

=1

=1

The output for the system illustrated in Fig 3 is

y=[I. Iy I. Vo Vi V]

The state of the system is

This is derived from the admittance matrix of the system

From the relation

X:[YE Yf ‘/za Vzb szc

The output state mapping for the system is the vector-valued function

Y

y = h(x).

wtyr -y O
= —Yr w 0

0

I1=YV

0 wu

T

}T
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Figure 3: Phasor model for a grounded-wye load with line-line fault

h(x) can be derived

>
=

I, =

W+ yr)Vea —yrVap
Iy = —yVia +yiVa

=
V]

(x)

(x)
h3(x) =1I.=y Ve
ha(x) = Vo = V4
hs(x) =Vy =V
he(x) =V, = V...



The Jacobian of h(x) is determined as follows

al, 0
a . — a_ + Vza - Vz
o ayl((yz yr) YyrVen)
0
= +—(Vza Via = V2
ayl( y+ ( b)Yr)
= Vtza
ol, 0
= 3 za — t z
dys ayf((yl +yf)Vea — tysVip)
0
= aij((Vza —Voo)yy + Vat)
= ‘/za - ‘/zb
ol 0
=2 = o (—ysVea + 0V
oy 51/1( v YuVao)
= Vzb
o, 0
oy 372/]0( YVea +yiVap)
= _Vza
ol,
=1V,
oy oy
= ‘/zc
oI, 0
=V
ayf 8yf Ui
=0
IWa - % =1
Voo OV,
oy _ oy _
oV OV
oV, B oV, _1
Ve OV,

2.4 Delta-Connected Load with Line-Line Fault
The output of the system illustrated in Fig. 4 is

y=[L I L. V, Vi, V.]"

where V' and I are phasor quantities.
The state of the system is

X = [Yf lel Vza ijb VZC]T
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Figure 4: Phasor model for a delta-connected load with a line-line fault

The output state mapping for the system is the vector-valued function

y = h(x). (33)
This is derived from the admittance matrix of the system
Yaa —Yab —Yac

Y=1-Yab  Ub —Ybc (34)
—Yac —Ybe Yee

where
Yaa = Yab + Yca (35)
Yob = Yab T Ybe (36)
Yee = Yea T Ybe (37)
and
Yab = Yf (38)
Ybe = Yea = Y- (39)
From the relation
I=YV (40)

h(x) can be derived

10



hi(x) = Io = YaaVea — YabVeb — YeaVee
= (Yab + Yea)Vza — YabVeb — Yea Vee
= (yr +yu)Vea —Y5Vep — yuVee

ha(x) = Iy = =YabVea + Yob Vet — Yoe Ve

= 7yab‘/za + (yab + ybc)‘/zb - ybc‘/zc

= —yVea + (Y5 + 1) Var — yu Ve
h3(X) =1I.= _yca‘/za - ybc‘/zb + ycc‘/;c

= _ycavza - ychzb + (yac + ybc)vjzc

—YuVea — YuVer + 2yu Ve
ha(x) =V, =V,
hs(x) =V = Vi
he(x) = Vi = Ve

11



The Jacobian of h(x) is determined as follows

ol, 0
=3 Vtza - ‘/s - Vtzc
Dy~ Oy ((ys + yu) YVso — yuVae)
0
= @(Vza - Vzb)yf + (Vtza - Vzc)yll
= Vtza — Vzb
ol, 1o}
a 7 A sza - V:s - szc
oml ~ Jun ((ys +yu) YiVeb — yuVae)
0
- %(‘[za - Vzb)yf + (Vtza - szc)yll
= ‘/za - Vtzc
ol 0
7 = +—(~yYVa Ve — Ve
Dy 8yf( YrVea + (Yr +yu)Vao — yuVze)
0
= T((Vzb - Vza)yf + (Vzb - Vzc)yll)
Yy
= Vzb — Vza
ol
a5 — & (= Vza + + ‘/z - VZC
D 5‘yu( Yy Yy +yu) Ve — yuVae)
0
= T((Vzb - Vtza)yf + (Vzb - Vtzc)?/ll)
yr
= Vzb — ‘/zc
al. 0
Dy = Tyf(_yllvza —yuVap + 2yuVze)
0
= 87%0((2‘/20 - ‘/za - ‘/zb)yll)
=0
al.
=57 \— za — z 2 zc
D0 ayll( YtVea — Yt Vab + 2ynVee)
0
= —((2 zc — Vza — V2
o ((2Vee = Vi = Vi)
= 2V'2c - Vza - ‘/;b
Mo Vi
Ve OV
o,
oV OV
Vo V.
Ve  OVe
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The mapping between variables and the state vector is

Yyr =21

Y = T2
Via = 73

Vb = 14

V.e = x5. (43)

Given the variable and state vector mapping, the Jacobian can be built as follows

ey - g HL2) =

H21) = g‘;f H22) =50

H(3,1) = g;; H(3,2) = g;;

H(4,3) = g“//" =1

H(5,4) = gy’b =1

H(5,4) = 5“//0 =1 (44)

Unless otherwise specified H(n, m) = 0.

2.5 Delta-Connected Load with a Line-Ground Fault

The output of the system illustrated in Fig. 5 is

T

y = [Ia L 1. Vo W ch] (45)
where V, and I are phasor quantities.
The state of the system is

x=[u Yy Vie Vip Vio]” (46)

In the above, the output is derived from the admittance matrix described in
Eqgs. 26 with the distinction that

Yaa = Yab T Yca + Yag (47)
Yob = Yab T Ybe (48)
Yee = Yea T Ybe (49)

and

13
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Figure 5: Phasor model for a delta-connected load with a line-ground fault

Yag = Y5 (50)
Yab = Ybe = Yca = YUI- (51)

The output-state mapping function is derived similarly as in Section 2.4:

hi(x) = Io = YaaVea = YabVab — Yea Ve
= (Yab + Yea + Yag)Vea = YabVab — YeaVae
= (yy +2yu)Vea — YuVes — yuVze
ha(x) = Iy = —YabVaa + Yob Vab — Yoe Ve
= ~YabVea + Yab + Ybe) Vao — Ybe Ve
= —yuVza + 2yuVap — yuVze
h3(x) = Ie = —YeaVea — YbeVeb + Yo Ve
= —YeaVza — Ybe Vb + Yac + Ybe) Vae
= —yYuVza — YuVao + 2yuVze
ha(x) =V, =V,
hs(x) =Vy = Vi
he(x) = Ve = Ve (52)

14



The Jacobian of h(x) is determined as follows

ol,
dyu

al,
Byf

on
dyu

oIy

dyy

ol,
dyu

oI,
Oy

Ve
OWV.a
W,

aVzb B

v,

WVee

" om
_ 0
Iyu

=2V,0 —

6yf
0

Ay
= Vza

Oyu

oy

0
((yr + 2y0)Vea — yuVsr — yuVze)

((2Vza - Vrzb - Vzc>yll + ‘/zayf)
Vzb - ‘/zc

((yr + 20u)Vea — yuVer — yuVse)

((2Vza - Vsz - Vzc)yll + Vzayf)

(—yuVea + 2yuVap — yuVee)

0
(—Veayu + 2V — Vae)yn)

:2‘/jzb_‘/za_‘/zc

yy
=0

Oyu

Oyu

(—yuVza + 2yuVer — yuVse)

(=yuVea — yuVer + 2yuVse)

0
(_Vza +2V,e — Vzb)yll)

= 2Vzc_ Vza — Vzb

Oy
=0
v,

v,
_ W
v,
_ oV
V.

(—yuVza — yuVer + 2yuVze)

=1
=1

=1
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The mapping between variables and the state vector is

Yu = 21

Yr = 22
Via = 73

Vb = 14

V.e = x5. (54)

Given the variable and state vector mapping, the Jacobian can be built as follows

H(1,1) = g;’; H(1,2) = g;‘;

H(2,1) = % H(2,2) = g;;

H(3,1) = gyllcl H(3,2) = g;;

H(4,3) = S‘Z‘L =1

H(5,4) = g“/f’b =1

H(5,4) = SVV:C ~1 (55)

3 Dynamic Implementation

As in the case of the previous section, the dynamic implementation of DSE is
applied to single-phase, grounded-wye and delta-connected load configurations.
While the phasor implementation uses a single time point for state estimation,
with the dynamic implementation several points are used, in this case 12 cycles
sampled at a 2 kHz sample rate.

3.1 Single-Phase Series RL Load
The output for the system illustrated in Fig. 6 is

v =il (56)

For the purposes of state estimation, this is sampled at points n € {1,..., N}
giving the vector-value equation

y = m . (57)

16
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Figure 6: Dynamic model for single-phase RL series load

where v = [o(1) 0(2) --- o(\)]",i=T[i(1) i2) --- i(N)]" and z =

T
[2(1) 2(2) - 2(N)] .
The state for the system is

x=[R L v, vi]". (58)
The output-state mapping for the system is the vector-valued function
y =h(x) (59)

where

hn(x) =vp(n) +vi(n) ¥Yne{l,2,...,N}
hyin(x) = Guy(n) Vne{l,2,...,N}
2AAt

honn(x) = Gu.(n) — Gu.(n — 2) +

(60)
In the above vg(n) = Rir(n) follows from discretizing vg(t) = Rir(t) and

_ 2AAt
6

vi(n) (vi(n) +4v(n— 1) + v (n—2))

follows from discretizing

it = % /t u(r)dr

—At

via Simpson’s 1/3 rule [12].

17
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Given the variable and state vector mapping, the Jacobian can be built as follows
The Jacobian of h(x) is determined as follows

H(n,2+n):§:(&>>:1 Vne{l,2,...,N}
dv(n)
H(n’2+N+n):8v(n):1 Vn e {1,2,...,N}
!
di(n)

H(N +mn,1) = 9C =uv(n) VYne{l,2,...,N}
H(N+n,2+n):aa;((n73):G Vne{1,2,...,N}
H(2N+n72,1):%:vr(n)fvr(n—@ Vn € {3,4,...,N}
H(2N+n—2,n):W=G Vn e {3,4,...,N}
H(2N+n2,n)§5(gl_22))G Vn € {3,4,...,N}

0z(n — 2 2At
H(2N+n—272):%:T(vl(n)—&-élvl(n—1)+vl(n—2))

Vn e {3,4,...,N}

0z(n—2) AtA

H(2N —2,24+ N = = Y 1,2,....N
(2N +n—2,2+ N +n) e 3 ne{l,2,...,N}
dz(n—2)  4AtA
ovun—-1) 3

H@2N +n—2,1+N+n) = vne{1,2,...,N}

H2N+n—-2,N+n)=

= vn e {1,2,...,N} (61)

In the above, H(n,m) = 0 unless otherwise specified. The state of the system
can then be solved for by applying eqs 14-16.

3.2 Grounded-Wye Load without Fault
The sampled output of the system illustrated in Fig. 7 is

T

y= [va Vy Ve 1, 1y 1. 24 2 zc] (62)
T, . , , T
where vy = [vg(1) vp(2) -+ we(N)]", dp = [ip(1) ip(2) - ig(NV)]
and zy = [26(1) 24(2) -+ z6(N — 2)]Tfor ¢ € {a,b,c}. The state for the
system is
T
z(t) = [G A Vea Vip Vee Via Vi Vlc] . (63)

where G = R~ is the conductance, A = L~! is the reciprocal of the inductance,
vr¢ is the voltage across the resistance on phase ¢ at each time period 1,..., N

18
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Figure 7: Dynamic model for a grounded-wye-connected RL load

and ve is the voltage across the inductance on phase ¢ at each time period
1,..., N. The output state-mapping for the system is given by

v¢(n) = Urd)(n) + vl¢(n) V¢ € {(1, b7 c}?” S {1727 .. aN}
ig(n) = Guyg(n) V¢ € {a,b,c},ne{1,2,...,N}

2AtA

2p(n —2) = G(vrg(n) — vrg(n — 2)) — (vig(n) + 4vig(n — 1) + vig(n — 2))
Vo € {a,b,c},ne€ {3,4,...,N}. (64)

In Eq. 64 z4(n) follows from discretizing

i¢(t) = A/t Ul¢(7')d7 (65)

—At

via Simpson’s 1/3 rule [12]. The output function h(x) can be written as

19



n)+uven) Vne{l,2,...,N}

hin(X) = Upa(
hntn(X) = vpp(n) +op(n) Vne{1,2,...,N}
hnton (x) = vpp(n) + vpp(n) Vn e {1,2,...,N}

(n) VnE{l,Q,---aN}
o(n)) Vne{1,2,... N}

(x)
(x)
(x)
hpisn(x) = Gupe(n) Vne{1,2,...,N}
(x)
(x)
(x) _ 2ALA

hnten(x) = G(Ura(n) — Ura (n - 2))
_ 2AtA

hntrn(x) = G(vpp(n) — vpp(n — 2)) 5 (vp(n) +4vie(n — 1) +up(n —2)) Vne{1,2,...

2AtA

hntsn (x) = G(vre(n) — vpe(n — 2)) — T(vlc(n) +4ve(n—1)4uve(n—2)) Yne{l,2,...

(66)

Given the variable and state vector mapping, the Jacobian can be built as follows

20

(Via(n) +dvg(n — 1) +ve(n —2)) VYn e {1,2,...

N}

NV}



H(n,2+n) =

H(N +n,2+ N +n) =
H(2N +n,24+2N +n) =
H(n,2+3N +n) =
H(N 4 n,2 44N +n) =

HN 40,2+ 5N +n) =

H(3N +n,2+4n) =

H(4N +n,2+ N +n)

H(5N +n,2+2N +n) =
H(6N +n—2,1) =
H(TN +n—-2,1) =
H(SN +n—-2,1) =

H(6N +n—2,2+n) =

H(TN +n—2,2+ N +n) =

H(SN +n—2,2+2N +n) =

Sorn) =1 Vne{l,2,... N}
g;’rbb((% =1 Vne{l,2,...,N}
gicc(&)) —1 Vne{l,2,... N}
8822221:1 vne{1,2,...,N}
g;z((z)) 1 Vne{l,2,...,N}
g;‘i((z))—l ¥ne{1,2,...,N}
aigén) =vrq(n) Vne€{1,2,...,N}
aiggb) =uvp(n) Vne{l,2,...,N}
Bzg(Gn) =ve(n) Vne{l,2... N}
;;fa(?n)):G Vne{L2,....N}
;;fb(&))_cz vn e {1,2,...,N}
;j:f(’;)):(; Vne{1,2,...,N}
%:vm(n)—vm(n—@
W:Urb(n)—vrb(n_2)
W:wcm)w%(wm
W:G Vn € {3,4,...,N}
WG Vn e {3,4,...,N}
W:G Vn € {3,4,...,N}

21
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_ 0zq(n —2)

H(6N +n—2,n) =—-G VYne{3,4,...,N}

_8vm(n—2)
_ Oz(n—2) L
H(7TN +n 2’N+n)778wb(n—2)7 G Vne{34,...,N}
_ 0z(n—-2)
Oza(n — 2 At
H(6N +n—2,2) = % = —?(Ula(n) + dva(n — 1) 4+ vie(n — 2))

Vne{3,4...,N}

BN -2,2)= 2202 B ) 4ty - 1) 4o - 2)
Vne{3,4...,N}

H(8N +n—2,2) = W = —%(Ulc(n) + 4vie(n — 1) + vie(n — 2))
Vne{3,4...,N}

0zq(n — 2) AtA

H(ON +n =224 3N +n) = “5= % = === W€ {3,4...,N}
H(7N+n—2,2+4N+n):82’752(”)2):—A;A Vne{3,4...,N}
H(8N+n—2,2+5N+n):83152(;)2):—A;A Vne{3,4...,N}
H(6N+n—271+3N+n)=gjl‘;((z_?):—4A3tA Vne{3,4...,N}
H(6N+n—2,1+4N+n):g;bb((n__?):—4A3tA Vne{3,4...,N}
H(6N+n—2,1+5N+n):g;cc((n__?):—4A3tA Vn e {3,4...,N}
H(6N+n—2,3N+n):gZZ((Z_22)):—AgA Vne {3,4...,N}
H(7N+n—2,4N+n):g;bb((n__22)):—AéA Vne{3,4...,N}
H(S8N +n—2,5N +n) = g;i((n_—Qz)) - —A?fA Vne {3,4...,N}. (67)

The state of the system can then be solved for by applying eqs 14-16.

3.3 Grounded-Wye Load with Line-Ground Fault
The sampled output of the system illustrated in Fig. 8 is
I’ (68)

y= [Va Vp Ve ia ib ica Zp Zc
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Figure 8: Dynamic model for a grounded-wye-connected RL load with a line-
ground fault

Note that there are no z,(n) output variables as the reactive impedance on
phase A is large compared to the parallel fault conductance G¢. The state for
the system is

x(t) = [G A Gf Viea Veb Vee Vip VZC}T (69)

where Gy = R™! is the conductance and the remaining states are the same
as those in that of the grounded-wye no-fault state in eq. 63. The output
state-mapping for the system is given by

v (n)_ Vrd)(n) Vne{l,?,...,N} <;5:a,
T vrp(n) +vg(n) VYne{l1,2,...,N} ¢e{bc},

ig(n) = Gupg(n) Vo € {a,b,c},ne{1,2,...,N}
2p(n —2) = G(vrg(n) — vrg(n — 2)) — 200k (vig(n) + dvig(n — 1) 4+ vig(n — 2))
Vo € {b,chn € {3,4..., N}, (70)

The output function h(x) can be written as

23



hn(X) = vpa(n) Vne{l,2,...,N}
(x) w(n) Vne{l,2,...,N}
(x) w(n) Yne{l,2,....N}
hpysn(x) = Gupa(n) Vne{l,2,...,N}
(x)
(x)
(x)

+ +
< o

VYne{1,2,...,N}
<(n)) vne{l,2,...,N}

2AtA
hnton(x) = G(vpp(n) — vp(n —2)) —

o (%) = Clvre(n) — vpeln — 2)) — 2
(1)

Given the variable and state vector mapping, the Jacobian can be built as follows
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(vp(n) + 4vie(n — 1) +up(n —2)) Vn e {1,2,...

——(vie(n) + dvie(n — 1) +ve(n —2)) Vne{1,2,...

N}



H(n,3+n)=
H(N+n,3+ N +n) =
H(2N +n,3+2N +n) =
H(N +n,3+3N +n)=

H(2N +n,34+4N +n) =

H(4N + 1,3+ N +n) =
H(5N +n,2 + 2N +n) =
HO6N+n—-2,1)=

H(TN +n—2,1) =
HO6N+n—22+N+n)=

H(TN +n—2,2+2N +n) =

Sorn) =1 Vne{l,2,... N}
m_1 Vne{1,2,...,N}
gicc(&)) —1 Vne{l,2,...,N}
g;’;((z))_1 vne{1,2,...,N}
g;cc((’;))—1 vne{1,2,...,N}
Bigén) = vo(n) Vne{l,2,...,N}
Bigén) =vp(n) Vne{l2,....N}
82521) =ve(n) Vne{l,2,...,N}
_6‘?5;(2):(; vne{l,2,...,N}
;;fb(&)):c: Vne{l,2,...,N}
;;:C((”n))_c Vn e {1,2,..., N}
6zb(gbG— 2) = vp(n) —v(n—2) Vne{3,4,...
P20 D ) 2) e 3
W:G Vn € {3,4,..., N}
WG Vn e {3,4,...,N}
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7N}

7N}



_ Oz(n—2)
~ Oup(n —2)
_ Oz(n—-2)
Vne{3,4...,N}
5} -2 At
H(6N +n—2,2) = % = — 5 (o (n) + dvn(n = 1) + v (n - 2))
Vne{3,4...,N}
0zc(n — 2 At
H(TN +n—2,2) = % = 5 (01e(n) + dvpe(n — 1) + vie(n — 2)
Vne{3,4...,N}

_ Ox(n—2)  AtA

H(6N +n—2,N+n) =-G Vne{3,4,...,N}

H(ON +n =23+ 3N +n) = =50 = === Wi {3,4..., N}
H(7N+n—2,3+4N+n):825752(;)2):—A;;A Vne{3,4...,N}
H(6N+n—2,2+3N+n)—g;l;(g;__?)——4A3tA Vne{3,4...,N}
H(7N+n—2,2+4N+n):g;cc((i_zl)) :—4A;A Vne {3,4...,N}
H(6N+n—2,1+3N+n):g;bb((n__z)):—AéA Vne{3,4...,N}
H(TN +n—2,14+4N +n) = g;cc((n__?) :fA?fA Vn e {3,4...,N}. (72)

3.4 Grounded-Wye Load with Line-Line Fault
The sampled output of the system illustrated in Fig. 9 is
s s s T
y=[Va Vo Ve o By do, 2Za 7 2z]

The output state-mapping for the system is given by

Vp(n) = vrp(n) +vp(n) Vne{l,2,...,N},¢ € {a,b,c},

Gvro(n) + Gy (vpe(n) + vig(n) —vrp(n) —vp(n)) VYne{l,2,...,.N} ¢=a
ip(n) = Gupp(n) — Gf(vpa(n) + vig(n) — vpp(n) —up(n)) Vne{l,2,...,N} ¢=
Gupe(n) Ve[L,2,...,N] p=c

2AtA

zg(n —2) = G(vrp(n) — vrp(n —2)) — (vig(n) + dvig(n — 1) + vg(n — 2))
Vo € {b,c},ne€{3,4...,N}. (74)
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Figure 9: Dynamic model for a grounded-wye-connected RL load with a line-line
fault

The output function h(x) can be written as

hn(x) = vpa(n) +vig(n) VYne{l1,2,...,N}

hnin(X) = vpp(n) +op(n) Vne{1,2,...,N}

hnton (x) = vpp(n) + vpp(n) Vn € {1,2 ,N}
(

n) = Gy(vra(n) + vig(n) — vp(n) —vp(n)) Vn € {1,2,...,N}
n)) Vne{l,2,...,N}

(x)
(x)
(x)
hntsn(x) = Gure(n) + Gy (vra(n )+vla( )fvrb(n)fvlb(n)) vn e {1,2,...,N}
(x)
(x)
(%) 2AtA

hnten (X) = G(Vra(n) — vpe(n — 2)) — T(vla(n) +4v(n—1)4+uven—2)) Vne{l,2,...

2AtA

6
2AtA

hnyrn (%) = G(vrp(n) = vrp(n = 2)) —

hntsn (x) = G(vre(n) — vpe(n — 2)) —
(75)

Given the variable and state vector mapping, the Jacobian can be built as follows
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(vp(n) +4ve(n — 1) +op(n —2)) Vne{1,2,...

(vie(n) + dve(n — 1)+ ve(n —2)) Yne{l,2,...

N}

N}



Ova(n)

H(n34+n) = 5o eh =1 Vne {12, N}
H(N+n,3+N+n):m:1 VYn e {1,2,...,N}
H(2N+n,3+2N+n):§;:c((7:3):1 Vne{l,2,...,N}
H(n,3+3N+n):gZi((Z)):1 Vne{1,2,...,N}
H(N+n,3+4N+n):g;Z((Z)):1 Vne{l,2,...,N}
H(2N+n,3+5N+n)—m—l Vne{1,2,...,N}
H(3N +n,1) = 82‘2’;) = va(n) Vne{l,2,... N}
H(4N+n,1):a;lé1;):vrb(n) Vn € {1,2,...,N}
H(5N+n,1):ai5g):vm(n) vn e {1,2,...,N}
= D) () + v1a(0) = (0ral0) + () ¥m € {1,2,..., N}
H(3N +n.3) = o
= 980 () + vra(m) + () + vip(m) Vm € {12, N}
H(AN +n.3) = 50
H(3N+7’L,3+7’L):aajja(gz):G+Gf vn € {1,2,...,N}
H(3N+n,3+3N+n):§;‘:((2)):Gf Vn e {1,2,...,N}
H(3N+n,3+N+n)—8azjb(gl))——Gf vn e {1,2,...,N}
H(3N +n,3+4N +n) = gzl‘”;(’;)) =Gy Vne{l,2,... N}

(76)
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H(4N +n,3+n) =

H(4N +n,3+ 3N +n) =
H(4N +n,34+ N +n) =
H(AN +n,34+ 4N +n) =
H(AN +n,3+ N +n) =
H(BN+n,3+4+2N +n) =
H(6N +n—-2,1) =

H(TN +n-2,1) =
HBN+n-2,1)=

H(6N +n—-2,34+n)=
H(TN+n—2,3+N+n)=
H(N +n—2,3+2N +n) =
H(6N +n—2,n) =

H(TN +n—2,N +n) =

H(8N +n—2,2N +n)

H(6N +n—2,2)

H(TN +n—-2,2) =

H(SN +n—2,2) =

H(6N +n—2,2+3N +n) =

Boy = ~Gr Yne (1.2 N)
maf vne{1,2,...,N}
aavifb((nn)):GJrGf vne{1,2,...,N}

;jfb(g) —G Vne{l,2... . N}
;j:c(&)):(; Vne{1,2,...,N}
%:vm(n)—vm(”—m vn € {3,4,..., N}
M:vrb(n)—vrb(n—2) vn € {3,4,..., N}
aG
W:vm(n)f’um(n*@ vn e {3,4,.... N}
W:G Vn € {3.4,...,N}
WC} Vne{3,4,...,N}
82652(;)2) —G Vne{3,4,...,N}
m:_c Vn e {3,4,...,N}
MG Vn € {3,4,...,N}
_m:—c Vn € {3,4,...,N}
— W - —%(Ula(n) +4dvia(n — 1) + via(n - 2))

Vn e {3,4...,N}

W _ ,%(wb(n) + 4vp(n — 1) + vp(n —2))

Vne{3,4...,N}

W _ _%(vlc(n) + due(n — 1)+ ve(n — 2))

Vn € {3,4...,N}

8211}(2(;)2) _ _A;A Vn € {3,4...,N}

aib (n)
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_ Oz(n—2) AtA

H(TN 41 =224 4N +0) = S50 = === Wi {3,4..., N}
H(8N+n2,2+5N+n)a;€£Z(n)2)A;iA Vn e {3,4...,N}
H(6N+n—271+3N+n):g;‘;((:;__?):—4A;A Vne{3,4...,N}
H(6N+n—2,1—|—4N+n):g;l;((n__?)——4A3tA Vne {3,4... N}
H(6N+n2,1+5]\7+n)g;z((n_?)4A3tA Vn e {3,4..., N}
H(6N+n—2,3N+n)=§;‘;((’;__22)):—A?fA Vne{3,4...,N}
H(7N+n—2,4N+n)=g;’;((n__22)) ——A;A Vne{3,4..., N}
H(8N +n—2,5N +n) = g;z((n_?) — fAsA Vn e {3,4...,N}. (77)

The state of the system can then be solved for by applying eqs 14-16.

3.5 Delta Load without Fault
The sampled output of the system illustrated in Fig. 11 is

. . . T
y = [Vab Ve Vea la W 1ley, Zgh  Zpe an] (78)
The state for the system is
T
x(t) = [G A7vrab Vrbe Vrca  Viab  Vibe Vlca] . (79)

The output state-mapping for the system is given by

vy (n) = vpy(n) +vp(n) Ve {1,2,...,N}, ¢ € {ab, bc, ca}l,
ia(n) = G(vrab(n) — vrca(n))
is(n) = G(vroe(n) — vras(n))
Zc(n) = G(Urca (”) - UrbC(n))

2AtA

zy(n—2) = G(vry(n) — vry(n —2)) — (V1 (n) + dvy (n — 1) + vy (n — 2))
Vi € {ab,bc,cat,n € {3,4...,N}. (80)

The output function h(x) can be written as
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hn(X) = Veap(n) + vip(n) Vne {1,2,..., N}
Bt N (X) = Uppe(n) + vipe(n) Vn € {1,2,...,N}
hnton (X) = Upea(n) + viea(n)  Vn € {1,2,...,N}
hntsn(X) = G(Vrap(n) — Vrea(n)) Yn e {1,2,...,N}
Bngan (X) = G(vrpe(n) — vrap(n)) Yn € {1,2,...,N}
hntsn (X) = G(Vrea(n) — vrpe(n)) ¥ € {1,2,...,N}
hn-‘rGN(X) = G('Urab(n) - Urab(n - 2)) - 24tA (vlab(n) + 4vlab(n — 1) + Ulab(n — 2)) Vn € {1, 2,... ,N}
hn+7N(X) = G(Urbc(n) Urbc(n 2)) — 2814 (vlbc(n) + 4vlbc(n - 1) + vlbc(n — 2)) Vn € {]., 2,... ,N}
hntsn (X) = G(Vrea(N) — Vpea(n — 2)) — %(vlca(n) + 4viea(n — 1) + viea(n —2)) Ve {1,2,...,N}

(81)

Given the variable and state vector mapping, the Jacobian can be built as follows
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Figure 10: Dynamic model for a delta-connected RL load
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H(n,2+n) =

H(N +n,2+ N +n) =
H(2N +n,2+4 2N +n) =
H(n,2+4 3N +n) =

H(N +n,2+4N +n) =
H(2N +n,2+ 5N +n) =
H(3N +n,1) =

H(4N +n,1) =

H(5N +n,1) =

H(3N +n,2+n) =
H(3N +n,2+2N +n) =
H(4N +n,2+ N +n) =
H(AN +n,2+n) =
H(5N +n,24 2N +n) =
H(5N +n,2+ N +n) =
H(6N +n—2,1) =
H(TN +n—2,1) =

H8N +n—21) =

Boran(n) 1 Vne{l,2,...,N}
gfj’;(&)) —1 Vne{l2,... N}
gf::a(&)) =1 Vne{l,2,...,N}

SZZ((Z)) =1 Wne{1,2,...,N}

SZZC((Z)) =1 Vne{l,2,... N}
3;1‘;((7])—1 Vne{1,2,...,N}

8?2:”) = Urap(n) — Vrea(n) Vn € {1,2,...
Olt) _ ) ) e (1,2,
et _ )~ ) < {1,...
3?,252) G vne{l,2,...,N}
32252) =-G Vne{l,2,...,N}
8?1;(2) —G Vne{l2...,N}
3225,2) — -G Wne{l,2...N}
3(325781) =G VYne{l,2,...,N}
6?})(2) — G vne{l,2....N}
W = Vpap(n) — Vrap(n — 2)
W = Vrpe(n) — Vppe(n — 2)
Pl =D ) )
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aN}
N}

aN}

Vn € {3,4,...,N}
Wn € {3,4,..., N}

Vn e {3,4,...,N}



H(6N+n—2,2+n):W:G Vn € {3,4,...,N}
H(7N+n2,2+N+n)WG Vn € {3,4,...,N}
H(8N+n—2,2+2N+n):W:G Vn € {3,4,...,N}

H(6N+n—2,n):m:—G Vn e {3,4,...,N}
H(7N+n2,N+n)mG Vn € {3,4,...,N}
H(8N+n—2,2N+n):m:—G Vn € {3,4,...,N}

H(6N +n—2,2) = W - —%(vlab(n) + dvgap(n — 1) + viap(n — 2))

Vn € {3,4...,N}
H(7TN +n—2,2) = W = *%(Ulbc(n) + dvipe(n — 1) + vipe(n — 2))
Vn e {3,4...,N}
H(8N +n—2,2) = W = —%(vzca(n) + Qica(n — 1) + vica(n — 2))
Vne{3,4...,N}
H(6N+n—2,2+3N+n):821;:(;)2):—A;A Vne{3,4...,N}
H(7N+n—2,2+4N+n):ag);l(z(;f)——AéA Vne{3,4...,N}
H(8N+n—2,2+5N+n):agsliz(;)2):—AtA Vne{3,4...,N}
H(6N+n—2,1+3N+n):gj;i)((:;_?):—4A3tA Vne {3,4... N}
H(6N+n—2,1+4N+n):g;’;i((’;__?) :—4A3m Vne{3,4...,N}
H(6N+n—2,1+5N+n)—g;cc‘;((n__i)——4A3tA Vn e {3,4...,N}
H(6N+n—2,3N+n):g;°;l;((Z_22)):—A;A Vne {3,4...,N}
H(7N+n—2,4N+n):g;[::((n__z)):—A;A Vne{3,4... N}
H(8N +n—2,5N +n) = g;cc‘;((n__?) = ngA Vne{3,4...,N}.
(83)
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The state of the system can then be solved for by applying eqs 14-16.

3.6 Delta Load with Line-Line Fault
The sampled output of the system illustrated in Fig. 9 is
I (84)

Note that there are no z.,(n) output variables as the reactive impedance on
phase a is large compared to the parallel fault conductance Gy. The state for
the system is

y = [Vab Ve Vea la W 1oy Zpe Zeq

.’li(t):[G A Gf Vrab  Vebe Vrca  Vibe Vlca]T~ (85)

where Gy = R~ is the conductance and the remaining states are the same as
those in that of the delta no-fault state in eq. 79. The output state-mapping
for the system is given by

v (’I’L)— er(n) V€[1,2,,N] w:ab,
T Vv n) () YeELL2,.... N] o€ {bc},
ta(n) = Gfvrap(n) — Gupea(n)
zb(n) = Gvrbc(n) — vamb(n)
ic(n) = G(vrea(n) — Vrbe(n))

2AtA

zp(n —2) = G(vry(n) = vry(n — 2)) — (Vi (n) + vy (n = 1) + vy (n — 2))
Vi € {bc,ca}t,n € {3,4...,N} (86)

(%) = vyap(n) Vn € {1,2,..., N}

(%) = Vrbe(n) + vppe(n) Vne{1,2,...,N}

(X) = Vrea(n) + viea(n) V€ {1,2,...,N}
hpisn(x) = Guee(n) Vn€{1,2,...,N}

(x) = Goy(n) Vne{l,2,...,N}
hnisn(x) = Guee(n)) Vne{l1,2,...,N}

(x) _ 2ALA

hnten (X) = G(Urpe(n) — Vppe(n — 2)) (vibe(n) + dvpe(n — 1) + vpe(n — 2)) Vn € {1,2,...,N}

| 2AtA

hntrn (X) = G(Urea(N) — Upea(n — 2)) (Vica(n) +4viea(n — 1) + vjea(n —2)) Vn e {1,2,...,N}.

(87)

Given the variable and state vector mapping, the Jacobian can be built as follows
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Figure 11: Dynamic model for a delta-connected RL load with a line-line fault
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H(n,3+n)=

H(N +n,3+ N +n)

HQ2N +n,3+2N +n) =

H(N 41,3+ 3N +n) = ol _

H(2N +n,3+4N +n) =
H(3N +n,1) =

H(4N +n,1) =

H(5N +n,1) =

H(3N +n,3) =

H(4N +n,3) =

H(3N +n,3+n) =
H(N +n,3+N+n) =
H(AN +n,3 +n) =
H(AN +n,3+ N +n) =

H(BN +n,24+2+ N +n) =

H(5N +n,3+ 2N +n)

H(6N +n—2,1)

H(TN +n—2,1) =

H(6N +n—2,2+ N +n) =

H(TN +n—2,242N +n) =

(%ab(n)

Orap(n) STl
g;cﬁ) —1 Vne{L2....N}
33;((3 —1 Vne{l,2...,N}
g;a(&)) —1 Vne{l,2,...,N}
ag’gl) = Urpe(n) Vn€{l,2,..., N}
ag"gl) = Urca(n) — vppe(n) Vn €{1,2,...,N}
agé’;) = vrap(n) V€ {1,2,...,N}
f’Zg? = —va(n) Vne{l1,2,...,N}
‘ZZZZ) =Gy Vne{l,2,...,N}
8?}2?(2) -G Vne{l2,... N}
2o et
ai:?(i) -G Vne{l,2,...,N}
o =0 2N
By =€ Y2 )
W = VUppe(n) — Vppe(n — 2)
W — tyea(n) — Vyea(n — 2)
W —G Vne{34,... N}
W —G Vne{34,.. N}
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Vn€{3,4,7N}

Vn€{3,4,aN}



Ozpe(n — 2)

H(6N+n—2,N+n)= =-G VYne{34,...,N}

Ovppe(n —2)
~ 0zea(n—2)
H(7N+n72,2N+n)fm— G Vn€{3,4,,N}
O0zpe(n — 2 At
H(6N +n—2,2) = %) = =3 (ine(n) + dvipe(n — 1) + vipe(n — 2))

Vne{3,4...,N}
0zea(n — 2) At

H(7N +n—2 2) —_— = _7(Ulca(n) + 4vlca(n - 1) + Ulca(n - 2))

OA 3
Vn € {3,4...,N}
0zpe(n — 2) AtA

H(6N — 2,3+ 3N = - =— A4 3,4...,N
(6N +n—2,3+3N +n) Doa(7) 3 n € {3, ,N}
ca(n —2 AtA
H(IN £n—2,3 44N 4 p) = Zeall =2 _ Vne{3,4...,N}
81116,1( ) 3
Ozpe(n —2)  4AtA
H(6N +n—2,2+3N Vne{3,4....,N
(6N +n + +n)= Dome(n —1) 3 n e { }
0Zca(n — 2) 4AtA
TN — 2,24 4N 3,4...,N
H(7N +n +4N +n) = Do 1)~ 3 ne{3,4....N}
Ozpe(n—2)  AtA
H(6N —2,1+3N = — vne{3,4...,N
(6N +n +3N +n) Donn—2) 3 n € { }
O0zealn —2)  AtA
H(TN —2,1+4N = — A4 3,4...,N}.
(TN +n—2,1+4N +n) D=2 3 n € {3, ,N}
(88)
The state of the system can then be solved for by applying eqs 14-16.
3.7 Delta Load with Line-Ground Fault
The sampled output of the system illustrated in Fig. 12 is
Yy = [Vab Vbe Vea Va ia ib icv Zab Zpe zca}T~ (89)
The state for the system is
T
I(t) = [G A Gf Vrab  Vebe Vreca Viaeb Vibe Vica Vf} . (90)

where G5 = R™! is the fault conductance, v is the voltage across the fault and
the remaining states are the same as those in that of the delta no-fault state in
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eq. 79. The output state-mapping for the system is given by

vy (n) = vpy(n) +vyp(n) Yne {1,2,...,N}, ¢ € {ab, bc, ca}l,
v

ip(n) = G(vrpe(n) — Vrap(n))

(n)
(n)
ia(n) = G(vrap(n) — vrea(n)) + Grop(n)
(n)
(n)

2ER, (1) + vy — 1) + vy (n — 2))

20— 2) = Glurs(n) — trs(n — 2))
Vi € {ab,bc,cat,n € {3,4...,N}. (93)

The output function h(x) can be written as

ho(X) = vpap(n) + vip(n) Vne {1,2,... N}

Bt N (X) = Uppe(n) + vipe(n) Vn € {1,2,...,N}

hnton (X) = Upea(n) + U1ea(n) VY € {1,2,...,N}
ve(n) Vne{l,2,...,N}

(Vrab(n) — Vpea(n)) + Grop(n) Vne{l,2,...,N}
(Upbe(n) — Vrap(n)) VR €{1,2,...,N}

haten (X) = G(Vrea(n) — vrpe(n)) Vn € {1,2,...,N}
(

(n)
Vpab(N) — Vpap(n — 2)) — 2884 (viap(n) + 4viap(n — 1) + vigp(n — 2)) V¥n e {1,2,...,N}

2AtA
- (Vibe(n) + dvpe(n — 1) + vppe(n — 2)) Vn € {1,2,...,N}

hnisn (X) = G(Uv'bC(n) - 'UTbC(n - 2))

2AtA
— ——(Vea(n) + 4viea(n — 1) + vjea(n — 2)) Vn € {1,2,...,N}.

(94)

hpnyon (%) = G(Vrea(n) — Vpca(n — 2))

Given the variable and state vector mapping, the Jacobian can be built as follows
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Figure 12: Dynamic model for a delta-connected RL load with a line-ground

fault
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_ =1 VnE{l,2,...,N}
H(’ﬂ,2+n) - 6Urab(n)
Ove(n) _ 1y ¢ {1,2,...,N}
H(N +n,2+ N +n) = Dompe(n)
8vca(n) =1 Vne {1,27...,]\7}
HENtn 242N +n) = 5 )
avab(n) _ Vn € 1’27.”’]\7}
H(n, 243N +n) = Aviap(n) bomed
81}1)0(”) =1 Vn€{1,27~-->N}
H(N +n,2+4N +n) = Ovipe(n)
6’Uca(n) =1 Vne {172’,..,]\7}
H(E2N +n,2+5N +n) = OVica(n) B
0vq(n) N}
— =1 Vne¢ {1727 ’
H(3N +n,2+6N +n) = Do;s(n)
dig(n) _ — Vrea(n) Vne{1,2,...,N}
HAN +n,1) = =52~ = 070(1) = yea(n)
82;,(71)_ — VUrablM Vn6{1,27~-~,N}
H(5N+n, 1) = W = Urbc(n) Uy b( )
Dic(n) — vpe(n) Vne{1,2,...,N}
H(6N+n, 1) = Ele = 'Urca(n) Urb ( )
dig(n) _ €{1,2,...,N}
H(4N +n,3) = el =vs(n) Vne{
aza(n) = V € 1323""N}
H(N +n,24n) = g% 25 =G ¥ne {
dia(n) ~G VYne{l,2,...,N}
H(4N +n,2+ 2N +n) = Doren (1)
Dia (1) 2,...,N}
e :G VnE {1, 3 )
H(4N 4+n,34 6N +n) = vy (n) f
H(5N +n,2+ N 4n) = Do (1)
alb(n) = —G V’I?,E 1;27"'7N}
HEN +n,2+n) = vrap(n) {
alc(n) =G vn€{1;2,ﬂN}
H(6N +n,2+2N +n) = Dorea(n)
dic(n) -G Vne{l,2,...,N}
HION 0.2 N ) = e 0 =
Ozap(n — 2) = vrap(n) — vyap(n —2) Vn e {3,4,...,N}
H(OIN+n-21)=—2~—=wvr
Ozpe(n — 2) = Vppe(n) — Vpe(n —2) Vn € {3,4,...,N}
HEN+n-21)=—27— =1
0zca(n —2) = VUpea(n) — Vpea(n —2) Vne{3,4,...,N}
H(9N+n—2,1)=T41 r
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H(6N+n—2,2+n):W:G Vn € {3,4,...,N}
H(7N+n2,2+N+n)WG Vn € {3,4,...,N}
H(8N+n—2,2+2N+n):W:G Vn € {3,4,...,N}

H(6N+n—2,n):m:—G Vn e {3,4,...,N}
H(7N+n2,N+n)mG Vn € {3,4,...,N}
H(8N+n—2,2N+n):m:—G Vn € {3,4,...,N}

H(6N +n—2,2) = W - —%(vlab(n) + dvgap(n — 1) + viap(n — 2))

Vn € {3,4...,N}
H(7TN +n—2,2) = W = *%(Ulbc(n) + dvipe(n — 1) + vipe(n — 2))
Vn e {3,4...,N}
H(8N +n—2,2) = W = —%(vzca(n) + Qica(n — 1) + vica(n — 2))
Vne{3,4...,N}
H(6N+n—2,2+3N+n):821;:(;)2):—A;A Vne{3,4...,N}
H(7N+n—2,2+4N+n):ag);l(z(;f)——AéA Vne{3,4...,N}
H(8N+n—2,2+5N+n):agsliz(;)2):—AtA Vne{3,4...,N}
H(6N+n—2,1+3N+n):gj;i)((:;_?):—4A3tA Vne {3,4... N}
H(6N+n—2,1+4N+n):g;’;i((’;__?) :—4A3m Vne{3,4...,N}
H(6N+n—2,1+5N+n)—g;cc‘;((n__i)——4A3tA Vn e {3,4...,N}
H(6N+n—2,3N+n):g;°;l;((Z_22)):—A;A Vne {3,4...,N}
H(7N+n—2,4N+n):g;[::((n__z)):—A;A Vne{3,4... N}
H(8N +n—2,5N +n) = g;cc‘;((n__?) = ngA Vne{3,4...,N}.
(96)
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The state of the system can then be solved for by applying eqs 14-16.

4 Experiments

Three diferent case-study sytems are considered:
1. A single-phase load
2. a grounded-wye constant-impedance load
3. a delta-connected constant impedance load.

These three load configurations are studied for both phasor state estimation
and DSE. In both cases, random noise with an amplitude of approximately 10
% of the signal peak is added to the measurements to verify noise immunity of
the methods.

4.1 Phasor Implementation

For the single-phase phasor model, it is assumed that the source voltage is 240
V and the load impedance R + jX is such that it draws a current of 10 —
j5 A. For the three-phase phasor models, both line-ground and line-line fault
configurations are considered. These assume that the voltage source is 480 V
rms line-line and the load impedance R+ jX is such that it draws 30—¢15 A per
phase. The fault resistance Ry is selected such that Ry = R/10. Measured data
is obtained by assuming a balanced input voltage and calculating the current
by multipling the input voltage phasor vector by the admittance matrix of the
load-fault network. This is also the case for the single-phase dynamic load,
though in that case the measured phasor voltage is converted to instantaneous
voltage to obtain the input for DSE.

4.2 Dynamic Implementation

The first system is solved ad-hoc assuming an ideal source with the parameters
listed in Table 1. The latter two systems are modeled in the MATLAB/Simulink
SimScape Specialized Power Systems library with the parameters listed in Ta-
bles 2 and 3. In the latter two systems, the load is connected to a 480 V rms
line-line source through 1000 ft of 1/0 AWG quadruplex overhead service drop
cable. Three different cases are considered:

1. No-fault
2. Line-ground fault

3. Line-line fault.
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Table 1: Parameters for Single-Phase Dynamic Load

Variable Symbol Value Units
Total load real power P 10 kW
Total load reactive power Q 5 kVAR
Line-line RMS source voltage Vi 480 'V
Simulation time T 10 ms
Sample rate T, 100 ps

Table 2: Common Parameters for Three-Phase Dynamic Models

Variable Symbol  Value Units
Total load real power P 10 kW
Total load reactive power Q 5 LkVAR
Line-line RMS source voltage Vu 240 V
Source resistance R, 19.2 Q
Source inductance L, 25.465 mH
Fault resistance Ry 1 mQ
Ground resistance R, 10 mQ
Cable positive-sequence resistance R. 183.7 mf
Cable positive-sequence reactance L. 26.6 mf
Simulation time T 200 ms
Fault start time T 50 ms

Table 3: Varying Parameters for Three-Phase Dynamic Models

Variable Grounded-Wye  Delta

Load resistance R (€2)
Load inductance L (mH)

18.432
24.457

55.296
73.3

4.3 Grounded-Wye Load

For the grounded-wye case, the system used in Fig. 13 is used. The load consists
of three balanced series RL branches wired in a grounded-wye configuration.
This system has the parameters listed in Tables 2 and 3. Note that the total
fault resistance for the line-ground fault is Ry + R, = 110 m€, while the total
fault resistance for the line-line fault is 2R; = 200 mS2.

4.4 Delta Load

For the delta-connected case, the system used in Fig.
consists of three balanced series RL branches wired in a delta configuration.
This system has the parameters listed in Tables 2 and 3. Note that the total
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Figure 13: Simulink model for a grounded-wye load with faults

fault resistance for the line-ground fault is Ry + R, = 110 m€, while the total
fault resistance for the line-line fault is 2R; = 200 mf2.

5 Results

This section presents results of state estimation for the single-phase, grounded-
wye and delta load configurations for both the phasor and dynamic cases. Re-
sults for the phasor models are presented in Table 4, while results for the dy-
namic models are presented in Table 5. The phasor models provide an excellent
estimate of the system parameters. DSE has difficulty estimating the fault resis-
tance for the dynamic model of grounded-wye network with a line-line fault. A
potential solution is to reduce the model order by neglecting the load impedance
on the faulted phases. Some moderate error is observed for the case of the delta-
connected load with a line-ground fault. Again, it may be possible to improve
performance by neglecting load impedance on the faulted phases.

Table 4: Results for Phasor State Estimation

Case R R X X Ry Ry
Single-Phase RL Load 19.200 19.200 9.600 9.600 - -
Grounded-Wye Line-Ground Fault 7.387 7.387  3.693 3.693 0.923 0.923
Grounded-Wye Line-Line Fault 7.387  5.184  3.693  4.787 0.923 0.935
Delta Line-Line Fault 22.160 22.160 11.080 11.080 2.770 2.770
Delta Line-Ground Fault 22.160 22.160 11.080 11.080 2.770 2.770
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Table 5: Results for Dynamic State Estimation

Case R(Q) R(Q) L (mH) L (mH) R;(mQ) Ry (mQ)
Single-Phase RL Load 19.200 19.265 25.465 25.988 - -
Grounded-Wye No Fault 18.432 18.404 24.446 24.485 - -
Grounded-Wye Line-Ground Fault 18.432 18.432 24.446 24.446 11.000 10.997
Grounded-Wye Line-Line Fault 18.432 18.432 24.446 24.446 11.000 3.165
Delta No Fault 55.296 55.412 73.339 73.495 — —
Delta Line-Line Fault 55.296 55.895 73.339 73.666 2.000 2.001
Delta Line-Ground Fault 55.296  55.479 73.339 73.495 11.000 11.405

6 Conclusions

The results in this study demonstrate that DSE is capable of correctly identi-
fying model parameters of three different load configurations for both normal
and faulted operation. These load configurations model a lumped equivalent
of a radial electrical network supplying multiple loads. Several models showed
sensitivity to inital conditions, particularly the delta-connected load, so it is
important that consideration be given to providing the method with good ini-
tial conditions. One issue is in making sure that there is a sufficient number
of measurements to estimate model states. For example, it is not possible to
infer impedances for an unbalanced delta-connected load given a single time
snapshot. The models presented here assume that loads are balanced to reduce
the number of states. This assumption can be an issue for systems with a high
degree of load imbalance

Existing work has demonstrated that DSE can operate with nonlinear ele-
ments [13]. One option for future work is to expand the methods here to other
load models. These could include nonlinear voltage-dependent models where
power is a polynomial function of voltage (ZIP loads) or those where power is
a polynomial function of both voltage and frequency such as the WSCC load
model [14]. Alternately, these could include dynamic load models such as an
induction motor model (MOTORW) or a composite load model (CMPLDW)
[15]. Last, there is the possibility of protecting line sections that include loads
with coordinated breakers at both ends. This could correspond to a distributed
parameter line or a Pi/Tee lumped equivalent model [16].
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7 Appendix

Given a state-output mapping

y —h(x) (97)
and error-weighting matrix W, the squared error is
J=€eWe. (98)

Given the Jacobian Hy at xg, y can be approximated as

y =h(xo) + Ho(x — xo). (99)
Substituting
J = [y —h(x0) — Ho(x — x0)|'Wl[y — h(xo) — Ho(x — Xo)]. (100)
Setting the Jacobian equal to zero
VJ =—HiW|[y —h(xo) — Hyo(x — x0)] = 0. (101)
Expanding
0=—HoWy + H)W Hox — H)W Hoxo — HyWh(xg). (102)
Rearranging
H{W Hox = —HoWy + H\W Hoxo + H,Wh(x0) (103)
(H\W Ho) ™ HyW Hox = (H{W Hy) "' [HoWy + H\,W Hoxo + H)Wh(x)].
(104)
and simplifying
H\WHyx = —HWy + H\W Hoxo + H,Wh(xo) (105)
x = (H\W Hy) "' [-HoWy + HyW Hoxo + H,Wh(xo)]. (106)
x = (H\W Ho) "' [H{W Hoxo + H{We] (107)
X = X0 + (HyW Ho) ' H{We. (108)
Finally, replacing x with x;41, xo with x; and e with ¢;
Xiy1 = X; + (HYW Ho) ' H{We;. (109)

In the case that errors are weighted equally, W is the identity matrix and the
update equation simplifies to

Xit1 = X; + (HyHo) ™' Hle;. (110)
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